小学数学五年级上册的知识点内容,帮助同学们了解知识重点,一起来看看吧。
1.小数乘整数的意义
求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。
2.小数乘法法则
先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。
3.小数除法
小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。
4.除数是整数的小数除法计算法则
先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。
5.除数是小数的除法计算法则
先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。
6.积的近似数:
四舍五入是一种精确度的计数保留法,与其他方法本质相同。但特殊之处在于,采用四舍五入,能使被保留部分的与实际值差值不超过最后一位数量级的二分之一:假如0~9等概率出现的话,对大量的被保留数据,这种保留法的误差总和是最小的。
7.数的互化
(1)小数化成分数
原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
(2)分数化成小数
用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
(3)化有限小数
一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。
(4)小数化成百分数
只要把小数点向右移动两位,同时在后面添上百分号。
(5)百分数化成小数
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
(6)分数化成百分数
通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
(7)百分数化成小数先把百分数改写成分数,能约分的要约成最简分数。
8.小数的分类
(1)有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。
(2)无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 … 3.1415926 …
(3)无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。
(4)循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555… 0.0333…12.109109 …;
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 …的循环节是“ 9 ” ,0.5454…的循环节是“ 54 ” 。
9. 循环节:
如果无限小数的小数点后,从某一位起向右进行到某一位止的一节数字循环出现,首尾衔接,称这种小数为循环小数,这一节数字称为循环节。把循环小数写成个别项与一个无穷等比数列的和的形式后可以化成一个分数。
10.简易方程:
方程ax±b=c(a,b,c是常数)叫做简易方程。
11.方程:
含有未知数的等式叫做方程。(注意方程是等式,又含有未知数,两者缺一不可)方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时 ,方程才成立 。
12.方程的解
使方程左右两边相等的未知数的值,叫做方程的解。
如果两个方程的解相同,那么这两个方程叫做同解方程。
13.方程的同解原理:
(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
14.解方程:
解方程,求方程的解的过程叫做解方程。
15.列方程解应用题的意义:
用方程式去解答应用题求得应用题的未知量的方法。
16.列方程解答应用题的步骤
(1)弄清题意,确定未知数并用x表示;
(2)找出题中的数量之间的相等关系;
(3)列方程,解方程;
(4)检查或验算,写出答案。
17.列方程解应用题的方法
(1)综合法先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种 思维过程,其思考方向是从已知到未知。
(2)分析法
先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。
18.列方程解应用题的范围 :小学范围内常用方程解的应用题:
(1)一般应用题;
(2)和倍、差倍问题;
(3)几何形体的周长、面积、体积计算;
(4)分数、百分数应用题;
(5)比和比例应用题。
19.平行四边形的面积公式:
底×高(推导方法如图);如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边=ah
20.三角形面积公式:
S△=1/2*ah(a是三角形的底,h是底所对应的高)
21.梯形面积公式
(1)梯形的面积公式:(上底+下底)×高÷2。
用字母表示:(a+b)×h÷2
(2)另一计算公式: 中位线×高
用字母表示:l·h
(3)对角线互相垂直的梯形:对角线×对角线÷2
一、填空
1、某数分别与两个相邻整数相乘,所得的积相差150,这个数是( )
2、每张方桌上放有12个盘子,每张圆桌上放有13个盘子。若共有109个盘子,则圆桌有( )张,方桌有( )张。
3、在1至1000这1000个整数中,既能被3整除有是7的倍数的整数有( )个。
4、三个连续自然数的积是120,这三个数分别是( )、( )、( )。
5、40人参加测验,答对第一题的有30人,答对第二题的有21人,两题都答对的有15人。两题都答错的有( )人。
6、今年八月一日是星期五,八月二十日是星期( )。
7、有一排算式:1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,2+19,3+21,…,那么( )+( )= 1994
8、节日之夜,广场上挂起了一排彩灯,共1999盏,排列的规律是:从头起每八盏为一组,每组的八盏灯依次为三盏红灯,二盏黄灯,三盏绿灯,那么最后一盏灯的颜色是( )。
9、在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,再自右至左每隔5厘米染一个红点,然后沿红点将木棍逐段锯开,那么长度是1厘米的木棍有( )条。
10、A、B、C、D四个数,每次去掉一个数,将其余3个数求平均数,这样算了4次,得到以下4个数:45、60、65、70,问原来四个数的平均数是( )。
11、妈妈买3千克苹果2千克梨,共付款12元;李奶奶买同样价格的苹果3千克,梨5千克,共付款21元。买1千克苹果付款( )元和1千克梨付款( )元。
12、有10枚伍分硬币,“伍分”的面朝上放在桌子上。现在每次翻动其中的9枚,翻动( )次,使“国徽”面全部朝上。
13、每张方桌上放有12个盘子,每张圆桌上放有13个盘子。若共有109个盘子,则圆桌有( )张,方桌有( )张。
14、一座大桥长6700米,一列火车以每分钟1000米的速度通过大桥,从车头上桥到车尾离桥共用了7分钟,这列火车长( )米。
15、小明把节省下来的硬币按四个1分、三个2分、两个5分的顺序排列,那么他排的第111个是( )分的硬币,这111个硬币共( )元。
二、计算
98766×98768-98765×98769
9999×2222+3333×3334
三解决问题
1、某列车通过360米的第一个隧道用了24秒,通过第二个长216米的隧道用了16秒。这列火车的车长是多少米?
2、学校买了3张办公桌和4把椅子,共用去394元,每张桌子比每把椅子贵73元。每把椅子要多少元?
3、轮船在静水中的速度是每小时21千米,轮船自甲港逆水航行8小时,到达相距144千米的乙港。从乙港返回甲需要多少小时?
4、100名学生中,有音乐爱好者53人,体育爱好者72人,那么音乐、体育都爱好的至少有多少人?至多有多少人?
5、有70块糖,如果第一个小朋友分得的是第二个小朋友的2倍,第二个小朋友分得的是第三个小朋友的2倍,最后还剩下7块糖没分完。每个小朋友分得几块糖?
6、五(1)班有50人,其中女生20人,在期中考试中,女生的平均成绩是85分,男生的平均成绩是80分,求五(1)班全体学生的平均成绩。
7、甲乙两地相距496千米,货车从甲地开往乙地,每小时行32千米,货车开出半小时后,客车从乙地开往甲地,它的速度是货车的2倍,问客车开出几小时后,两车相遇?