浮点数的一个普遍问题是它们并不能精确的表示十进制数。并且,即使是最简单的数学运算也会产生小的误差,比如:>>> a= 4.2
>>> b= 2.1>>> a+ b
6.300000000000001>>>(a+ b)== 6.3 False
>>>
这些错误是由底层CPU和IEEE 754标准通过自己的浮点单位去执行算术时的特征。由于Python的浮点数据类型使用底层表示存储数据,因此你没办法去避免这样的误差。
如果你想更加精确(并能容忍一定的性能损耗),你可以使用decimal模块:>>> from decimal import Decimal>>> a= Decimal(‘4.2’)
>>> b= Decimal(‘2.1’)>>> a+ b
Decimal(‘6.3’)>>> print(a+ b) 6.3
>>>(a+ b)== Decimal(‘6.3’) True
初看起来,上面的代码好像有点奇怪,比如我们用字符串来表示数字。然而,Decimal对象会像普通浮点数一样的工作(支持所有的常用数学运算)。如果你打印它们或者在字符串格式化函数中使用它们,看起来跟普通数字没什么两样。
decimal模块的一个主要特征是允许你控制计算的每一方面,包括数字位数和四舍五入运算。为了这样做,你先得创建一个本地上下文并更改它的设置,比如:>>> from decimal import localcontext
>>> a= Decimal(‘1.3’)>>> b= Decimal(‘1.7’)>>> print(a/ b)
0.7647058823529411764705882353>>> with localcontext() as ctx:… ctx.prec= 3
… print(a/ b)…
0.765
>>> with localcontext() as ctx:… ctx.prec= 50
… print(a/ b)…
0.76470588235294117647058823529411764705882352941176>>>
decimal模块实现了IBM的”通用小数运算规范”。不用说,有很多的配置选项这本书没有提到。
Python新手会倾向于使用decimal模块来处理浮点数的精确运算。然而,先理解你的应用程序目的是非常重要的。如果你是在做科学计算或工程领域的计算、电脑绘图,或者是科学领域的大多数运算,那么使用普通的浮点类型是比较普遍的做法。其中一个原因是,在真实世界中很少会要求精确到普通浮点数能提供的17位精度。因此,计算过程中的那么一点点的误差是被允许的。第二点就是,原生的浮点数计算要快的多-有时候你在执行大量运算的时候速度也是非常重要的。
即便如此,你却不能完全忽略误差。数学家花了大量时间去研究各类算法,有些处理误差会比其他方法更好。你也得注意下减法删除以及大数和小数的加分运算所带来的影响。比如:
>>> nums=[1.23e+18, 1,-1.23e+18]
>>> sum(nums)# Notice how 1 disappears 0.0
>>>
上面的错误可以利用math.fsum()所提供的更精确计算能力来解决:>>> import math
>>> math.fsum(nums) 1.0
>>>
然而,对于其他的算法,你应该仔细研究它并理解它的误差产生来源。
总的来说,decimal模块主要用在涉及到金融的领域。在这类程序中,哪怕是一点小小的误差在计算过程中蔓延都是不允许的。因此,decimal模块为解决这类问题提供了方法。当Python和数据库打交道的时候也通常会遇到Decimal对象,并且,通常也是在处理金融数据的时候。